
Lecture 17 : Poisson Processes – Part I

STAT205 Lecturer: Jim Pitman Scribe: Matias Damian Cattaneo <cattaneo@econ.berkeley.edu>

17.1 The Poisson Distribution

Define Sn = X1 + X2 + ... + Xn. In a very simple setup, the Xi are independent
indicators with

P[Xi = 1] = p

P[Xi = 0] = 1 − p

We know that the distribution of Sn is Binomial (n, p). So we have

P[Sn = k] =

(

n

k

)

pk (1 − p)n−k
,

E[Sn] = np, and

Var[Sn] = np (1 − p) .

For fixed p, we have that

Sn − np
√

np (1 − p)

d
−→ N (0, 1)

as n → ∞.

Now we let n → ∞ and choose pn small so that npn = λ. We see that

P[Sn = 0] = (1 − p)n =

(

1 −
λ

n

)n

−→ e−λ,

P[Sn = 1] = np (1 − p)n−1 = λ

(

1 −
λ

n

)n−1

−→ λe−λ,

and in general

P[Sn = k] =

(

n

k

)

pk (1 − p)n−k

≈
nk

k!
pk (1 − p)n −→

λk

k!
e−λ,

which is the mass function of a Poisson distribution.
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Definition 17.1 The Poisson distribution with parameter λ is given by mass func-
tion

Pλ(k) =
λk

k!
e−λ.

Observe that
∞

∑

k=0

Pλ(k) = 1

Summing up, we see that as n → ∞, if we let p → 0 such that np = λ ∈ [0,∞),

Sn
d

−→ Poisson(λ)

Observe that we can relax the assumption that the indicators are identically dis-
tributed and extend this result to the triangular array setup. Let the Xn,is be taken
such that

P[Xn,i = 1] = pn,i

Note we have E[Sn] =
∑n

i=1 pni and assuming that as n → ∞ we have
∑n

i=1 pn,i −→ λ

and maxi pn,i −→ 0, we obtain the result:

Sn
d

−→ Poisson(λ) .

The proof of this result is formalized in [1].

Observe the following facts about the Poisson distribution:

1. As shown above, it is the limit of properly chosen binomial distributions.

2. The sum of independent Poisson random variables with parameters λ and υ is
another Poisson random variable. This result can be written as follows:

Poisson(λ) ∗ Poisson(υ) = Poisson(λ + υ) ,

where we use the fact that for discrete distributions P and Q on {0, 1, 2, ...},

(P + Q)(n) =
n

∑

k=0

P (k) Q(n − k)

for n = 0, 1, 2, ..., the convolution formula for the distribution of sums of inde-
pendent random variables.
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17.2 Basics of Poisson Processes

We discuss the basics of Poisson processes here; for details, see [1].

Consider the positive numbers divided up into intervals of length 10−6. We can think
of this as time broken up into very short intervals. Consider a process (X1, X2, . . .)
where Xi is 1 if a certain thing happens in the ith such time interval and 0 otherwise.
Suppose further that these Xis are independent and are 1 with probability λ · 10−6.

The waiting time until the first occurrence of this thing is defined as

T1 = {first n : Xi = 1}

here Xi = 1 with probability λ
n
.

We see that
P[T1 > m] = (1 − p)m = [(1 − p)n]

m
n −→ e−λ m

n

as m → ∞, and thus

P

[

T1

n
> t

]

= P[T1 > nt] −→ e−λt

as m → ∞. Notice that this is an exponential distribution.

When n = 106 → ∞ we obtain a point process (Ti), an increasing sequence of random
variables where

T1 ∼ Exponential(λ)

T2 − T1 ∼ Exponential(λ) , independent of T1

...

so we get T1, (T2 − T1) , (T3 − T2) are iid Exponential(λ).

Alternatively, the counting process is defined by

Nt = # {i : Ti ≤ t} =
n

∑

k=1

1 {Tk ≤ t} .

In general {Nt}t≥0 is called a Poisson process with rate λ on (0,∞). It is not difficult
to show that Nt ∼ Poisson(λt).

It is important to note that almost by construction this process (Nt, t ≥ 0) has sta-
tionary independent increments: that is, for 0 < t1 < t2 < ... < tn, we have that
N(t1) , N(t2) − N(t1) , ..., N(tn) − N(tn−1) are independent Poisson variables with
means µt1, (t2 − t1)µ, ..., (tn − tn−1)µ.
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17.3 Details of Poisson Processes

In this section we present details on Poisson processes.

17.3.1 The Poisson Process and its counting process

Definition 17.2 A real valued process Nt, t ≥ 0, is a Poisson Process with rate λ

(or PP (λ)) if Nt has stationary independent increments, and for all s, t ≥ 0, the
increment Xt+s − Xt is a Poisson random variable with parameter λs.

Interpretation: Jumps of Nt are “arrivals” or “points”.

Let Tk = inf{t : Nt = k}. We say that 0 < T1 < T2 < · · · are these arrival times.
Note that NTk

= k and NT−

k
= k − 1.

As a convention, we will always work with the right continuous version of (Nt, t ≥ 0)
which is increasing and hence has a left limit a.s.

Theorem 17.3 A counting process Nt, t ≥ 0 (increasing, right continuous, left
limits exists, jumps of 1 only) is a PP (λ) if and only if the distribution of its
jumps (T1, T2, T3, . . .) satisfies that (Tk − Tk−1, k = 1, 2, . . .) is a sequence of i.i.d.
Exponential(λ) random variables. (T0 = 0.)

Proof: For the “if” direction, see [1], Section 2.6 (c. Poisson process). The idea is
given i.i.d. (Wk) such that P(Wk > t) = e−λt, t ≥ 0, we construct (Nt, t ≥ 0) by the
formula:

Tk = W1 + · · ·+ Wk

Nt = number of {k : Tk ≤ t}

=
∞

∑

k=1

1{Tk ≤ t}

Informally, the {Tk} are the points of the PP (λ) denoted by N .1

The “only if” direction is easier. Suppose Nt ∼ Poisson (λ). By the Strong Markov
Property (see [1, section 5.2]), we can deduce that Tk − Tk−1 are independent. We

also can deduce: P(Tk > t) = P(Nt < k) =
∑k−1

j=0 e−λt (λt)j

j!
. Hence, by applying d

dt
, we

get P(Tk ∈ dt) = e−λt (λt)k−1

(k−1)!
dt.

1Friendly reference: ”Probability”, J.Pitman, Springer 1992.
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This shows Tk ∼ gamma(k, λ). Since φTk−Tk−1
= (φTk

)1/n, and the characteristic
function uniquely determines the distribution, this determines the distributions of
Tk − Tk−1. Since Tk − Tk−1 ∼ exponential(λ) will ensure Tk ∼ gamma(k, λ) and vice
versa, Tk − Tk−1 ∼ exponential(λ).

17.3.2 The Poisson Point Process

Definition 17.4 A Poisson Point Process (P.P.P.) with intensity measure µ on
(S,S) is a collection of random variables N(B, ω), B ∈ S, ω ∈ Ω defined on a
probability space (Ω, F, P) such that:

1. N(B) = N(B, ω), B ∈ S, ω ∈ Ω;

2. N(·, ω) is a non-negative integer or ∞ -valued measure on (S,S) for each ω ∈ Ω;

3. N(B, ·) is a r.v. with Poisson(µ(B)) distribution: P(N(B) = k) = e−µ(B)(µ(B))k

k!
for all B ∈

S; and

4. If B1, B2, ... are disjoint sets then N(B1, ·), N(B2, ·), ... are independent
random variables.

Example 17.5 Let S = R+, S = Borel(R+), µ = λ · Lebesgue. Let N(B, ω) be
the measure of B, whose cumulative distribution function is defined as the counting
process (Nt, t ≥ 0) for a PP (λ) as described before. That is,

N([0, t]) := Nt =

∞
∑

k=1

1{Tk ≤ t}

So,

N(B) =
∞

∑

k=1

1(Tk∈B)

= the number of Tk which fall in B

Example 17.6 S = R, S = Borel(R), µ = λ · Lebesgue. Stick together independent
PP (λ) on R+ and R−.

Theorem 17.7 Such a P.P.P. exists for any σ-finite measure space.

Proof: The only convincing argument is to give an explicit construction from se-
quences of independent random variables. We begin by considering the case µ(S) <

∞.
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1. Take X1, X2, ... to be i.i.d. random variables with form µ(·|S) so that P (Xi ∈

B) = µ(B)
µ(S)

.

2. Take N(S) to be a Poisson random variable with mean µ(S), independent of the
Xi’s. Assume all random variables are defined on the same probability space
(Ω,F , P).

3. Define N(B) =
∑N(S)

i=1 1(Xi∈B), for all B ∈ S.

Exercise 17.8 Verify that this N(B, ω) is a P.P.P. with intensity µ. (Use thinning
property of Poisson distributions.)

Example 17.9 (Poissonization of multinomial) If B1, B2 are disjoint events and
B1 ∪ B2 = S

P (N(B1) = n1, N(B2) = n2) = P (N = n1 + n2)P (N(B1) = n1, N(B2) = n2|N = n1 + n2)

= e−λ λn1+n2

(n1 + n2)!
(
n1 + n2

n1
)pn1qn2,

where N = N(S), p = µ(B1)
µ(S)

, and q = µ(B2)
µ(S)

.

17.4 General Theory Behind Poisson Processes

It is important to note that we have presented two different examples of convolution
semigroups (convolution 1/2groups) of probability distributions on R. In general, we
have a family of probability distributions (Ft, t ≥ 0) such that:

Fs ∗ Ft = Fs+t

where ∗ is convolution. Examples are:

1. Ft = N (0, σ2t)

2. Ft = Poisson(λt)

3. Ft = δct for some real c ∈ R
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For any such family we can create a stochastic process (Xt, t ≥ 0) so that X has
stationary independent increments, that is:

Xt ∼ Ft

Xt − Xs ∼ Ft−s, for 0 < s < t

and so on. Notice that we did this by explicit construction for Ft = Poisson(λt). For
the case of Ft = N (0, σ2t) we need to be clever, and in general we will need to appeal
to Kolmogorov’s Extension Theorem (see [1] for details). In particular,

1. the Poisson case gives a Poisson Process; and

2. the Normal case gives a Brownian motion (also known as a Wiener Process).

In particular, Brownian motion has the special feature that it is possible to define the
process to have continuous paths; that is, for almost every ω, t → Xt(ω) is continuous.

Definition 17.10 A probability distribution F on R is called infinitely divisible if
for every n, there exist i.i.d. random variables Xn,1, Xn,2, ..., Xn,n such that

Sn = Xn,1 + Xn.2 + ... + Xn,n ∼ F ;

that is, there exists a distribution F 1
n

so that

F 1
n
∗ F 1

n
∗ ... ∗ F 1

n
= F,

so F has a convolution ”nth root” for every n.

Definition 17.11 Let (Xt, t ≥ 0) be a process with stationary independent incre-
ments and distribution function Ft at time t. Ft is said to be weakly continuous
in t as t ↓ 0 if

lim
t↓0

P [|Xt| > ε] = 0

for all ε > 0

Theorem 17.12 (Lévy-Khinchine) There is a 1-1 correspondence between infinitely
divisible distributions F and weakly continuous convolution semigroups (Ft, t ≥ 0)
with F1 = F .

Corollary 17.13 Every infinitely divisible law is associated with a process with sta-
tionary independent increments which is continuous in P as t varies.
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For a proof see [2] or [3]

Now we present another example. Consider accidents that occur at times of Poisson
Process with rate λ. At the time of the kth accident let there be some variable Xk

like the damage costs covered by insurance companies. We have

Yt =
Nt
∑

k=1

Xk

where Yt is the total cost/magnitude up to time t. It is not difficult to show that
(Yt, t ≥ 0) has stationary independent increments.

We look at the distribution of Yt. This is called a compound Poisson process. It is
hard to describe explicitly, but we can compute its characteristic function.

Exercise 17.14 Find a formula for the characteristic function of Yt in terms of the
rate λ of Nt, and the distribution F of Xt, that is,

F (B) = P[Xk ∈ B] .

Observe we have

E[exp {iθYt}] =
Nt
∑

n=1

E[exp {iθYt} · 1 {Nt = n}]

=

Nt
∑

n=1

E[exp {iθ (X1 + X2 + ... + Xn)} · 1 {Nt = n}]

=

Nt
∑

n=1

E[exp {iθ (X1 + X2 + ... + Xn)}] · E[1 {Nt = n}]

=
Nt
∑

n=1

(E[exp {iθX}])n ·
e−λt (λt)n

n!

= e−λt exp
{

λtE
[

eiθX
]}

= exp

{

λt

∫

R

(

eiθx − 1
)

P[X ∈ dx]

}

= exp

{

t

∫

R

(

eiθx − 1
)

L(dx)

}

where we let L(·) = λP[X ∈ ·], which is called the Lévy Measure associated with the
process.

It is important to note that this is an instance of the Lévy-Khinchine formula which
gives the characteristic function of the most general ∞-divisible law.

In the next subsection we include more details on this.
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17.4.1 Computation of an instance of LK Formula

Given a P.P.P. N , say N(B) =
∑

i 1{Xi ∈ B}. For some sequence of random variables
Xi. Consider positive and measurable f :

∫

fdN =
∑

i

f(Xi) (17.1)

has clear intuitive meanings and many applications.

Example 17.15 Xi could be the arrival time, location, and magnitude of an earth-
quake:

Xi = (Ti, Mi, Yi).

f(t, m, y) represents the cost to the insurance company incurred by an earthquake at
time t with magnitude m in place y.

How do we describe its distribution? Consider the case where f is a simple function.
Say f =

∑m
i=1 xi1{Bi} where the Bi’s are disjoint events and cover the space. Then

∫

fdN =
∑

i

xiN(Bi) (17.2)

where N(Bi) are independent r.v.s with Poisson(µ(Bi)) distribution.
This is some new infinitely divisible distribution.

Now we need a transformation. Because f ≥ 0, it is natural to look first at the
Laplace transformation. Take θ > 0:

E

[

e−θ
R

fdN
]

= E
[

e−θ
P

i xiN(Bi)
]

(17.3)

=
∏

i

E
[

e−θxiN(Bi)
]

(17.4)

=
∏

i

exp
[

−µ(Bi)(1 − e−θxi)
]

(17.5)

= exp

[

−
∑

i

µ(Bi)(1 − e−θxi)

]

(17.6)

= exp

[

−

∫

(1 − e−θf(s))µ(ds)

]

(17.7)

17.4implies17.5 because N(Bi) ∼ Poisson(µ(Bi)), and if N ∼ Poisson(λ), then

E(e−θN) =

∞
∑

n=0

(e−θ)n λn

n!
e−λ

= e−λe(e−θλ)

= exp
[

−λ(1 − e−θ)
]
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Theorem 17.16 For every non-negative measurable function f , we have, writing
e−∞ := 0:

E

[

e−θ
R

fdN
]

= exp

[
∫

(e−θf(s) − 1)µ(ds)

]

(17.8)

This formula is an instance of the Lévy-Khinchine equation.

Proof: We have shown that the result holds when f is a simple function. In general,
there exist sequence of simple functions fn such that fn ↑ f . Then apply the Monotone
Convergence Theorem and Dominated Convergence Theorem.
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